Key Points for Electromagnetic Waves (II)

10. Polarization:

• Describes the orientation of the electric field vector. Common types are linear, circular, and elliptical polarization.

11. Plane Wave Solutions:

• Electromagnetic waves can be described as plane waves, where field vectors are uniform in planes perpendicular to the direction of propagation.

12. Boundary Conditions:

• At the interface between two media, the continuity of the tangential components of $E^{t} e^{E}$ and $H^{t} e^{H}$ must be maintained.

13. Reflection and Refraction:

• Governed by the laws of reflection and Snell's law, resulting from boundary conditions at interfaces.

14. Complex Representation:

• Using phasor notation, the fields can be represented as complex vectors, simplifying the analysis of harmonic waves.

15. Harmonic Waves:

• For sinusoidal steady-state conditions, the fields oscillate harmonically with time.

16. Electromagnetic Spectrum:

 Electromagnetic waves cover a wide range of frequencies, including radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays.

17. Energy Density:

• The energy density of an electromagnetic wave is given by: $u = \frac{1}{2} \left(\epsilon_0 E^2 + \frac{B^2}{H_0} \right)$

18. Applications:

• Electromagnetic wave equations and field vectors are fundamental in telecommunications, radar systems, optical devices, and medical imaging technologies.